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We examine preconditioners for the discrete indefinite Helmholtz equation on a
three-dimensional box-shaped domain with Sommerfeld-like boundary conditions.
The preconditioners are of two types. The firstis derived by discretization of a related
continuous operator that differs from the original only in its boundary conditions. The
second is derived by a block Toeplitz approximation to the descretized problem. The
resulting preconditioning matrices allow the use of fast transform methods and differ
from the discrete Helmholtz operator by an operator of low rank. We present exper-
imental results demonstrating that when these methods are combined with Krylov
subspace iteration, convergence rates depend only mildly on both the wave number
and discretization mesh size. In addition, the methods display high efficiencies in an
implementation on an IBM SP-2 parallel computeg 1998 Academic Press

1. INTRODUCTION

The problem considered in this paper is to compute the numerical solution of
Helmholtz equation

—Au—Ku=f. (1)

This equation arises in numerous physical applications [9, pp. 640ff]. Here we con:
a three-dimensional box-shaped dom&in= (as, by) x (az, by) x (az, bs) C RS, with
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Sommerfeld-like boundary conditions
up —iku =0 @)
on a£2, which constitute an approximation to the Sommerfeld radiation condition
rILrT(LDr(Un —iku) =0, (€))

used in models of acoustic scattering [17].
Discretization of the problem (1)—(2) results in a linear system of equations

Au= f. 4)

Since the problem is fully three-dimensional, any reasonable discretization will cont:
a large number of unknowns and require considerable storage. Direct methods base
Gaussian elimination with partial pivoting require a prohibitive amount of additional stc
age and thus have limited use. Multilevel methods suffer from the requirement that cos
spaces used must be fine enough to accurately represent the solution; see e.g., [5,
20, 21]. In addition, the complex symmetric coefficient matixypically has eigenval-
ues with both positive and negative real parts. This can cause difficulties for iterat
solution methods, and preconditioning of the matrix is essential in order to attain e
ciency.

In this paper, we propose solving the discrete Helmholtz equation using Krylov subsp
iterative methods with a preconditioning methodology derived from fast direct metho
The basic principle behind fast direct solvers is to apply an inexpensive transformat
to break a problem into a number of lower-dimensional but independent problems. M:
solvers use fast Fourier transforms (FFTs) to achieve separation of variables and then
the resulting set of decoupled problems using sparse matrix methods. Fast direct met
are standard tools for solving the Poisson equation on regular domains with Dirich
Neumann, or periodic boundary conditions [6]; they can be adapted to other dome
via a capacitance matrix or embedding methods [14, 24]. They have been used for
three-dimensional Helmholtz equation with Dirichlet or Neumann boundary conditions
an irregular domain [23], and for the two-dimensional problem in polar coordinates w
nonreflecting boundary conditions [18] (derived from a Dirichlet-to-Neumann mappin
in [11, 15]. In this work, we develop efficient solvers for problems with Sommerfeld-lik
boundary conditions on box-shaped domains. Combining our techniques with capacite
matrix methods would produce solvers for general geometries in Cartesian coordine
including exterior problems.

Our idea generalizes some results developed for two-dimensional Helmholtz proble
by Ernst and Golub [12]. (See also [8, Sec. 4] for variants applied to definite ellip
problems.) We approximate the discrete operaorith a matrix Q that can be treated
with fast direct methods. For finite difference discretizations, we dépilsy defining and
discretizing the differential operator in the same way asAcexcept that the boundary
conditions on either two or four faces Qfare replaced by more convenient ones (Dirichles
or Neumann). The resulting matri@ differs from A by a (relatively) low-rank operator
and can be used as a preconditioner&pto accelerate the convergence of iterative solver
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based on Krylov subspaces. We also develop variants of these ideas for finite elemer
cretizations (on uniform grids), focusing on trilinear elements. Here, rather than explic
modifying the boundary conditions to constru@t we use the fact that the discrete oper
ator A is close to a block Toeplitz matrix and replace certain sub-blocks lo§ Toeplitz
approximations that are amenable to fast transforms. For both types of discretizat
we will demonstrate empirically tha meets the requirements for an effective precond
tioner:

e Applying the action ofQ—! to a vector is not too expensive. For our preconditioner
using Q! entails a set of FFTs together with solution of smaller dimensional proble
(see Section 2).

e Q greatly reduces the number of iterations needed by Krylov subspace metho
solve (4).

In particular, we will show that for several choices @f the experimental convergence
behavior of preconditioned restarted GMRES [25] depends only mildly on both the w
numbeik and the discretization mesh size. In addition, we will demonstrate how the meth
can be implemented on a parallel computer with high efficiency.

The paper is organized as follows. In Section 2, we show how fast transform mett
can be used to generate preconditioning operators for finite difference discretizatior
the Helmholtz equation and we develop variants applicable to low-order finite elen
discretizations, using trilinear elements as a specific example. In Section 3, we pre
the results of a series of numerical experiments demonstrating the performance o
preconditioners. In most cases, there is virtually no increase in iteration counts as
mesh size is refined for fixed wave numbers; especially for finite differences, ther
only slight dependence on the wave numbers. In addition, we show that the new met
are more effective than a standard algebraic preconditioner based on symmetric su
sive overrelaxation (SSOR) [30]. In Section 4, we show how the methods can be im
mented on parallel computers, and we demonstrate their parallel efficiency using ex
ments on a sixteen processor IBM SP-2. Finally, in Section 5, we make some conclu
remarks.

2. THE PRECONDITIONERS

Good preconditioners for Krylov subspace iterations can be determined in two way:

e preconditioners derived from operators related to the desired operator.
e preconditioners derived from matrices related to the desired matrix.

We will use both approaches in our work. For simplicity, we restrict our attention
Q = (0, 1)3, the unit box.

2.1.Preconditioners for Finite Difference DiscretizationgGiven positive integers,
my, andm,, let problem (1)—(2) be discretized by the seven-point (second order ac
rate) finite difference operator on a uniform mesh with cells of &iz& hy x h,, where
hy=1/(mx + 1), hy=1/(my + 1), h,=1/(m, + 1). Assume that the normal derivatives
in the boundary conditions are approximated by one-sided differences and that the dis
boundary conditions are used to eliminate all unknowng@nThe resulting “stencil” at
interior grid points is
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0 0
0
~C
v 0 0 0
0 —¢c, O
00 0

wherec, = 1/h2, ¢, = 1/h?, ¢, = 1/h2, andd = 2(cx + ¢y +C;) — k2. The figure depicts
the contributions to the stencil in a givery plane together with the contributions in the
two neighboringk-y planes in thez-direction. For points adjacent to tkeboundaries, the
value

G (1+4ikhy)
=T ken2
is subtracted from the center value of the stencil, and similarly foy taedz boundaries.

If the matrix problem is formed by ordering the unknowns by lines withirxtheplanes,
the resulting matrixA is block tridiagonal and can be written in tensor product form as

A=lm, @ lm ®TY +1m, @ TY @ I, + T ® Im, & Im, — Klimm,m,-
Here, |, denotes the identity matrix of size, and
Tng:) = me + ¥x me

has sizem, with

2 -1 1
-1 2 -1 0

X

Tm = Cx . ' . ) Em =
-1 2 -1 0
-1 2 ] 1

The matricesT,%) andT,? are defined analogously. (See for example, [29, Sec. 4.5] for tt
one- and two-dimensional versions of these statements.)

It was shown by Ernst and Golub [12] that for the Helmholtz equation on a tw«
dimensional rectangular domain, an effective preconditioner can be devised by repla
Sommerfeld-like boundary conditions on two opposite edges by Dirichlet or Neumann ¢
ditions. Let us extend this idea to three-dimensional problems. If we replace the bounc
conditions (2) atx=0 andx =1 by homogeneous Dirichlet conditioms= 0, then the
problem is separable in thedirection. Discretization yields a matrix

Qd= |mzmy®me+P®|mx, (5)
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where

(my)

P=1Im®Ty"™” +T™ & Im, — Klm,m,-

The eigenvectors of,, are the columns of the orthogonal matti corresponding to
a discrete sine series representation. Therefore, the produatt] w can be formed by
computing the discrete Fourier sine transform of the veetaindw = Ugv is the inverse
transform of the vector. If Dq is the diagonal matrix of eigenvalues @, , thenQq can

be represented as

Qd = (lmzmy ®Us)(|mzmy 02y Dd +P® |mx)(|mzmy ®UJ)~ (6)

Reordering the rows and columns of the matfiym, ® Dg + P ® Im, in (6) by lines within
eachy-zplane yields a matri® containingm, diagonal blocks, each with the same nonzer
structure as a five-point finite difference discretization of a two-dimensional problem.

Using Qg as a preconditioner entails applying the actiorQ@f1 to a vectorv at each
step of an iterative algorithm. The discussion above shows that this computation ca
performed in the following sequence of steps:

(1) Performm,my sine transform operations in tkeoordinate directions to compute
V1 = (lmzmy ® U;,r)v-

(2) Solvem, two-dimensional problems, one in eagfz plane, to compute,.

(3) Performm,my inverse sine transform operations in theoordinate directions to
computew = (Imzmy ® Ug)vs.

The solution of the two-dimensional problems required in Step (2) can be done u
a variety of techniques, including general sparse direct methods [10], band solvers,
domain decomposition.

Consider a variant of this preconditioner, derived using Dirichlet boundary conditic
at two pairs of opposite faces 6f2: x =0, 1 andy =0, 1. The resulting preconditioning
matrix is

Qud=Im, ®lm, ® Ty, + Im, ® T, ® I, + T ® I, ® Im, — Klmmm,-  (7)

A set of sine transforms in thg-direction still decouples the problem into, two-
dimensional subproblems as in (6), but now if this is followed by a set of sine transfol
in they-direction, the result ism,my independent one-dimensional (tridiagonal) problem:
Step (2) of the computation of the action('()ﬁcjL then has the following form:

(2a) Perfornm,m, sine transform operations in tlyecoordinate directions.
(2b) Solvem,m, tridiagonal systems in thecoordinate directions.
(2c) Performm,m, inverse sine transform operations in fheoordinate directions.

We will consider four preconditioning operators of this type:

e Qq derived from Dirichlet boundary conditions:at= 0, 1.

e Qqq derived from Dirichlet boundary conditionsxat=0,1y = 0, 1.

e Q, derived from homogeneous Neumann boundary conditions-at0, 1. The
fast solver here involves discrete cosine transforms and solutiom, d¥vo-dimensional
problems.
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e Qqnnderived from homogeneous Neumann boundary conditionsdt, 1, y=0, 1.
The fast solver involves discrete cosine transforms in two directions plus solutiogmaf
one-dimensional (tridiagonal) problems.

If my andm, are powers of two, then the time required to compQfglv or Qv is
proportional tamymy,m,(logmy +logmy +1). Fonglv or Q; v, the time is proportional
to mymym;, logmy plus the time to solve the two-dimensional problems.

Clearly, it is possible to derive other variants of these ideas based on other bounc
conditions. As long as the Sommerfeld-like boundary conditions are retained in at least
coordinate direction, the preconditioning operators that use any combination of Dirict
and Neumann boundary conditions are all nonsingular for any valle of

2.2.Preconditioners for a Finite Element DiscretizatioriThe weak formulation of the

Helmholtz equation (1)—(2) is to finde S such that
a(u,v) = (f,v) forallv e S,

where

a(u,v):/(Vu-VvT—kqu)—ik/ uv
Q d

Jao
(f,v):/ fo
Q

and S is an appropriate Sobolev space (oftéft(2)), depending onf. Note that the
boundary conditions (2) are explicitly incorporated into the weak form.

(8)

Let Sy denote the finite dimensional subspacé dietermined from continuous piecewise
trilinear basis functions on rectangular elements. The discrete weak form is tg, fin&,
such that

a(up, v) = (f,v) forallv € S;.

Assuming uniform cells of size x h x h and using a natural ordering of unknowns, the
resulting coefficient matrixA again has block tridiagonal structure. (Different values o
h can be used in each coordinate direction; we restrict our attention to cubic cells only
simplify the notation.) We describe it using its stencil at interior mesh points, which consi
of the contribution from the stiffness matrix (frorv @ - Vv)),

1 -2 —1
2 0 -2
-1 -2 -1
z 2 0 -2
h
y & 0 32 0
2 0 -2
I 1 -2 -1
2 0 -2
-1 -2 -1

together with the contribution from the mass matrix (frifau, v)),
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l : 54 34
Y 216

x

For the mesh points on the boundary, fewer elements contribute to the stiffness and
matrices and the stencils are somewhat different. We omit a detailed description but ob.
that contributions from the boundary integral in (8) are pure imaginary since the b
functions are real. The matrii has sizem® where nowh =1/(m — 1). (This is slightly
different from the relation between mesh size and number of grid points for finite differen
because here the unknowns on the boundary are included in the system.)

To develop preconditioners, one alternative is to simply use the matrices derived aboy
finite differences. That is, given a finite element grid with unknowns, 1eQq, Qgd, Qn,
and Qn, be the preconditioning matrices of the same size defined in Subsection 2.1.

An alternative and somewhat more successful approach is to derive preconditioners
tensor product and Toeplitz structure that match the finite element matrix except a
boundary. First, we recall that the sine transform diagonalizes matrices of the form
[0 1

101

Sp=al+8| |, )
10
1

1

L 0_
whereo andpg are arbitrary scalars [29, Theorem 4.5.2].

Second, we observe that the finite element matrix is close to a matrix with tensor pro

structure. The contribution of the mass matrix can be expressetka£16 times

-S119S1® Si1+ B,

whereBy, is honzero only in rows corresponding to boundary points. Similarly, the stiffne
matrix ish/12 times

18910891 +49:1R1 Q1 -1 ® 10 S2+321 @1 ® 1 + Bs,

whereBs is nonzero only in rows corresponding to boundary points.

Letus define a matri@dd that matches the finite element matrix in all rows except tho:
corresponding to the andy boundaries; in those rows, we simply neglect the contributiol
from By, and Bs. The resulting preconditioner differs from the finite element matrix by
matrix of rank 4m? —m). Since we have omitted the nonzero®ip and B corresponding
to thex andy boundaries, and since each of the other matrices in the tensor product re
sentation is diagonalized by the matidx corresponding to the discrete sine transformatio!
we have an easy way to form the prod@;}dlv:
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(1) Performm? sine transform operations in thecoordinate directions to compute
v1 = (Im ® UJ)v.
(2) Solvem two-dimensional problems, one in eagiz plane, to compute;:
(3a) Perfornm? sine transform operations.
(3b) Solvem? tridiagonal systems.
(3c) Performm? inverse sine transform operations
(3) Performm? inverse sine transform operations in tkeoordinate directions to
computew = (I @ Ug)v,.

A preconditioner@nn can be defined in an analogous way, by changing the rows cc
responding to the andy boundaries in a way so that the discrete cosine transformatic
diagonalizes the resulting matrices in the tensor product formulation. Since the co:s
transformation diagonalizes matrices of the form

[1 1
101
Cop=al +5 - :
10
1

1
- 1_
we choosex and g in the same way as fog, g in order to match the interior stencil
coordinates. The resulting preconditioner differs frérn the same rows a@qn.

Remark2.1. Itis also possible to define matrioég andQ, that matchA except in
rows corresponding to just one opposite pair of boundaries, as in the developrgrermud
Qn above. Because these types of preconditioners were more costly for the finite differe
examples (see Section 4), we did not implement these variants.

3. EXPERIMENTAL RESULTS

In this section, we present the results of numerical experiments in which the preconditi
ers described in Section 2 are used with the iterative method GMRES (20) [25] to solve
discrete Helmholtz equation. Our concern here is the effect of mesh size and wave nur
on performance. Additional results showing behavior on a parallel computer are giver
Section 4. In all tests, the linear system (4) is defined by choosing a discrete saldiwh
the right hand side is then computedfas- Au. We consider two discrete solutions:

(1) avector with real and imaginary parts consisting of uniformly distributed rando
numbers in the intervaH1, 1];

(2) asmooth vector whose value at the mesh point with iiglgk 1) is 109 —iQjki,
wheregjiq = 10,000j + 100k + 1.

The first case is designed to show the behavior for problems with non-smooth solutic
and the second case for problems with smooth solutions.

The iterative solver is used with right-oriented preconditioning; that is, GMRES is fo
mally applied to the preconditioned system

AQlu=1f u=0Q.
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TABLE 1
Iteration Counts for GMRES (20) with Preconditioners That Combine One-Dimensional
Transforms with Two-Dimensional Sparse Direct Solves: Finite Differences with Non-
Smooth Solution

Qq (sine+ 2D solves)

Qn (cosine+ 2D solves)

m m

k 20 40 60 80 k 20 40 60 80
11 11 12 — 1 4 3 2 —

10 11 — 5 7 5 —

10 11 11 — 10 10 8 8 —
20 12 12 12 — 20 15 14 12 —
30 13 14 14 — 30 20 18 18 —
40 12 18 17 — 40 31 21 20 —
50 16 19 24 — 50 44 26 27 —

This ensures that the norm minimized by GMRES is independent of the choice of
preconditioner. The iteration is stopped when

Irjll2
IIfl2

wherer; = f —Au; is the residual for the iterate;, up=0, and the norm is the usual
vector Euclidean norm. All computations with these preconditioners were performec
multiprocessors of an IBM SP-2 computer in double precision. (See Section 4 for dete

We use a set of uniform three-dimensional grids of size m x m for 20 < m < 80,
together with a variety of wave numbeks For anyk, accurate discrete solutions of (1)
will be obtained only if the mesh is fine enough to resolve the features of the probl
A commonly used criterion is for the mesh to include at least ten grid points per we
i.e., to requirek < 27/(10h). See [16] for rigorous justification of this criterion for one-
dimensional problems, instead of the more stringent requiremerikdvabe bounded. In
the tabulated data shown below, results for problems with at least ten grid points per \
lie above the jagged line; data lying below these lines are included only to show trends
do not correspond to physically meaningful computations. Dashed lines (=) correspor
problems that are too large for practical computation on this configuration.

Tables 1 and 2 show results for non-smooth problems and finite difference discretizat
Table 1 shows that iteration counts required by GMRES (20) with the preconditioners
entail a set of trigonometric transforms together with direct solution of two-dimensio
subproblems. The entries on the left are for the preconditi@aemwhich uses sine trans-
forms, and the entries on the right are 9§, which uses cosine transforms. We will refel
to these here as the “two-dimensional” solvers. Table 2 shows analogous resks; for
andQnn, where the two-dimensional subproblems are also treated using fast transform:
will refer to these (less costly) preconditioners as the “one-dimensional” solvers. Tab
shows analogous results for smooth problems. For the sake of brevity, here we only di:
the one-dimensional preconditioné@gy and Qnp.

The following trends are evident in these tables:

<10°°,
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TABLE 2
Iteration Counts for GMRES (20) with Preconditioners That Combine Two Sets of One-
Dimensional Transforms with One-Dimensional Tridiagonal Solves: Finite Difference with
Non-Smooth Solution

Quq (sine+ 1D solves) Qnn (cosine+ 1D solves)
m m
k 20 40 60 80 k 20 40 60 80
14 15 13 12 1 5 4 3
12 13 14 14 5
10 13 14 15 15 10
20 20 25 21 21 20
30 36 30 29 28 30
40 34 53 47 45 40
50 46 76 69 69 50

(1) Fornon-smooth problems, iteration counts are insensitive to mesh size. Indeed
counts often decrease hglecreases. Performance is much better than would be expec
from the rank(m? — m) of the difference betweeA and the preconditione®.

(2) Iteration counts for the methods based on the sine transform increase very mode
with the wave numbek; counts for the cosine transform are more sensitivie boit they
are smaller whek is small.

(3) Fewer iterations are required with two-dimensional solvers (for which the boun
ary conditions determining) are more like those determining) than with the one-
dimensional solvers. As we will see in Section 4, however, this is at the expense of signific
extra work.

(4) The counts for smooth problems are somewhat higher than in the non-smooth c
The qualitative dependence of performance on wave number is largely the same, as i

TABLE 3
Iteration Counts for GMRES (20) with Preconditioners That Combine Two Sets of One-
Dimensional Transforms with One-Dimensional Tridiagonal Solves: Finite Differences with
Smooth Solution

Quq (Sine+ 1D solves) Qnn (cosine+ 1D solves)
m m
k 20 40 60 80 k 20 40 60 80
16 23 36 42 1 6 6 6 6
13 18 23 30 5
10 14 20 26 30 10
20 18 22 28 32 20
30 26 37 36 40 30
40 29 55 55 53 40

50 24 75 69 81 50
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TABLE 4
Iteration Counts for GMRES (20) with Preconditioners That Combine One-Dimensional
Transforms with Two-Dimensional Sparse Direct Solves: Trilinear Finite Elements with Non-
Smooth Solution

Qq (sine+ 2D solves) Qn (cosine+ 2D solves)
m m

k 20 40 60 80 k 20 40 60 80

24 25 26 — 1 23 22 22 —

32 29 28 — 5 32 30 29 —
10 48 37 34 — 10 51 41 39 —
20 87 65 58 — 20 85 67 59 —
30 300 85 79 — 30 300 104 89 —
40 300 146 89 — 40 300 245 127 —
50 300 300 158 — 50 300 300 300 —

dependence on mesh size, except in the case of small wave numbers with sine transf
here the iteration counts appear to grow roughly linearly Vwith

Tables 4—-6 show the iteration counts for the trilinear finite element discretization. Here
use@dd andan for the one-dimensional solvers; these were more effective than the varic
Quq and Qnn. Numbers with an asterisk correspond to the maximum number of iteratic
permitted. Many of the trends are the same as for finite differences: iteration counts for
smooth problems are essentially independent of the mesh size; the sine-based methc
generally more effective than the cosine-based methods; and, for smooth problems,
and dependence of the sine-based method on mesh size are somewhat greater. The s
ity to wave number is somewhat more pronounced than for finite differences, althougt
the larger values df considered, the iteration counts decrease as the mesh is refined.

TABLE 5
Iteration Counts for GMRES (20) with Preconditioners That Combine Two Sets of One-
Dimensional Transforms with One-Dimensional Tridiagonal Solves: Trilinear Finite Elements
with Non-Smooth Solution

Qy4 (sine+ 1D solves) Q. (cosine+ 1D solves)
m m

k 20 40 60 80 k 20 40 60 80

14 15 15 14 1 12 12 11 11

14 14 14 14 5 21 19 18 18
10 19 17 17 17 10 43 40 39 38
20 51 35 31 30 20 156 138 123 112
30 164 73 51 41 30 300 253 214 198
40 300 135 97 77 40 300 300 300 300

50 300 231 146 140 50 300 300 300 300
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TABLE 6
Iteration Counts for GMRES (20) with Preconditioners That Combine Two Sets of One-
Dimensional Transforms with One-Dimensional Tridiagonal Solves: Trilinear Finite Elements
with Smooth Solution

Qqq (sine+ 1D solves) Qnn (cosine+ 1D solves)
m m

k 20 40 60 80 k 20 40 60 80
15 19 23 32 1 12 12 12 12
5 14 17 19 23 5 18 20 20 19
10 17 20 24 27 10 35 35 34 36
20 34 32 31 33 20 115 112 101 97
30 108 56 46 46 30 206 180 167 168

40 189 92 71 73 40 246 300 300 300

50 272 150 115 123 50 300 300 300 300

suggests that for these wave numbers the asymptotic behauior{a8) of the solversis be-
ing approached only for the finest meshes considered here. In these tests, performance
dependent on the smoothness of the solution than in the experiments with finite differen

In a few tests without preconditioning, GMRES (20) required an average of eight timr
more steps than with th@44 preconditioner for non-smooth problems, and at least fiftee
times more steps for smooth problems. (These tests were for finite differene@f) and
40 anck < 20; a maximum of 300 steps was used, and for the smooth problems the stopy
criterion was not satisfied in a majority of the runs.)

To compare the performance of the new preconditioners with a “standard” algebr
preconditioner, we show in Tables 7 and 8 iteration counts obtained using the SSOR
conditioner [30] (withw = 1) with GMRES (20). This method has been used to good effe
for solving the Helmholtz equation with multiple right hand sides (derived, e.g., form inc
dent waves at different angles) in [13], cf. also [3]. These tests were run on a uniproce:
Sun SPARCstation 20 in Matlab, and we considered only mesh sizes less than or equ
m=60. (Storage limitations permitted onty < 50 for trilinear elements.) In almost all

TABLE 7
Iteration Counts of GMRES (20) with SSOR (w = 1) Preconditioning: Non-Smooth Solutions

Finite differences Trilinear elements
m m
k 20 40 60 k 20 40 50
26 19 20 1 20 19 19
5 26 28 24 17 27 26
10 37 49 50 10 27 38 42
20 76 78 87 20 80 61 66

30 200 103 103 30 300 90 85
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TABLE 8
Iteration Counts of GMRES (20) with SSOR (w = 1) Preconditioning: Smooth Solutions

Finite differences Trilinear elements
m m
k 20 40 60 k 20 40 50
1 52 200 300 1 26 99 122
40 122 209 5 24 62 97
10 57 170 249 10 37 78 113
20 110 159 219 20 96 99 117
30 237 175 222 30 300 122 127

cases, these iteration counts are larger than the analogous entries from Tables 1-6, &
growth in iteration counts with increasing wave numbers is considerably more pronoun
The differences are especially dramatic for smooth problems. (We also remark, how:
that the SSOR method was surprisingly insensitive to mesh size in the non-smooth
An analysis of behavior like this for a simple elliptic model problem is given in [22].) |
addition, these tests were run with a “natural” ordering of the unknowns, which does
have efficient parallel implementation. Tests with point red-black ordering for the fin
difference example (fon < 40, k < 20, and non-smooth problems) required on averag
65% more steps.

4. PARALLEL IMPLEMENTATION AND PERFORMANCE

The algorithms developed in Section 2 are well adapted for parallel computation in
shared memory and message-passing environments. We have implemented them on a
SP-2 computer assuming that the number of processors does not exceeth;. In this
section, we describe the implementation and present the results of experiments shc
parallel performance.

4.1.Parallel implementation. For ease of illustration, we describe our implementatio
under the assumption that there @re- 4 processors. The mesh is partitioned among pr
cessors as in Fig. 1; ifh, is divisible by p then each processor contaimg/ p blocks of

e

4

3

2|
Processor

—_

FIG. 1. Partitioning of the three-dimensional mesh among 4 processors.
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mymy grid points oriented along they plane. Ifm; is not divisible byp, then the number
of x-y planes assigned to each processor differs by at most one.

4.1.1.Parallel implementation of the iterative method/Me use the original form of the
restarted GMRES algorithm, based on the Arnoldi basis, as presented in [25]. With
partitioning described above, the GMRES algorithm is easy to parallelize: each proce:
is responsible for storing and updating at most

. {mﬂ
m, = | — | mymy
p

unknowns and for maintaining the factored form of a Hessenberg matrix of giz€using

r steps of GMRES between restarts). Communication is necessary only for inner prod
and matrix-vector products. The cost per iteratioigh,) floating point operation plus
accumulation of (on averagé) + 3)/2 sums of scalars across processors, plus the cost
matrix-vector products and preconditioning.

4.1.2.Parallel implementation of matrix-vector productsComputation of products of
the finite difference or finite element matrix with a vector requires that each proces
send its highest-numbeready plane to the processor numbered one greater, and its lowe
numberedx-y plane to the processor numbered one less (if these processors exist).
stencil can then be applied to the local data. The cost per matrix multifiyris) floating
point operations plus 2 sends and receivesighy, numbers per processor.

4.1.3.Parallel implementation of the preconditioningThe preconditioning computa-
tion is a somewhat more complex operation. Let

We arrange the work in the chart below, estimating the cost assuminmgredm, are
powers of 2. Note that the costs@f,y andQ,,, are identical to those dDqq.

Operation Cost

Each processor computes sine or cosine transforms in thection O(rm, logm,) operations.
on its local data.

The data are rearranged so that each processor has an approximatéch processor sends at most
equal number of/-z planes. This requires a nontrivial amount of r"‘—pﬁ rme]my numbers to every
communication: the data movement from the perspective of Proces- other processor.
sor 2 is shown in Fig. 2.

Each processor then solves its assigned two-dimensional problemBor Q4 and Q,, the cost is the
For preconditioner®)yq and Q,,, this entails sine or cosine trans-  solution of [m—pﬂ problems of
forms in they direction followed by solution of tridiagonal systems,  size mym,. For Qq4q and Qq,

followed by inverse sine or cosine transforms. gy and Q,, a the cost isO(my(logm, + 1))
two-dimensional problem is solved in each of the planes. operations.
The data are rearranged to the original configuration. Each processor sends at mo

[T277%1m, numbers to every
other processor.
Each processor computes inverse sine or cosine transforms in theO(h, logm,) operations.
direction.
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1~

Destination processor Source processor

FIG. 2. Destination and source processors for data movement, from the perspective of Processor 2.

Remarl4.1. Form, =my =m, =m, the total arithmetic cost faQqq or Qnn is propor-
tional to &ggm and the communication cost (assuming no contention for messages
simultaneously) is proportional t%f. The communication cost is the same for the twc
dimensional direct solver®q or Qp, and the smallest possible arithmetic cos(Dis%A) if

a nested dissection method is used [10]; this strategy would neglect any need for pivc
For the tests described below, we used a bandsolver (which allows pivoting), resultir
cost proportional td%s.

Remarkd.2. ForQgq and Qn,, data movement can be completely masked by comp
tation of the sine or cosine transforms in $hdirection, provided communication speed i
not too slow and the hardware supports overlapping of communication and computa
This option is not currently supported on the SP-2.

4.2. Parallel performance. We now describe the performance of the solvers using tl
transform-based preconditioners on a sixteen processor IBM SP-2 computer, a distril
memory machine with explicit message passing. The system contains sixteen RS600!
processing nodes running AlX, interconnected via a proprietary interprocessor com
nications switch. The computational component of the program was written in Fortra
and compiled using the mpxIf90 compiler with the optimization (-O) switch. All module
were taken from off-the-shelf software and modified to conform to Fortran90: GMRES
derived from the TEMPLATES package [2]; the two-dimensional direct solvers use
LAPACK [1] bandsolvercgbsv and cgbtrs, as do the tridiagonal solvers used for the
one-dimensional preconditioners; and the sine-transform and cosine-transform routine
from FFTPACK [28]. All tests used double precision complex floating point computatio
Communication was performed using MPI [26] with nonblocking sends (MHEND)
and blocking receives (MPRECYV). Inner products were performed and broadcast usi
MPI_ALLREDUCE.

The results on parallel performance are summarized in Table 9 for finite differences
Table 10 for trilinear finite elements. Again, dashed lines correspond to problems that \
too large. The entries show CPU times for solving the discrete problem with non-smc
solution on various grid sizes with the sine-based preconditioners. For an understandi
parallel performance it suffices to look at just one wave number, which in these cases
k = 5; results for the cosine-based preconditioners also lead to the same conclusion:



178 ELMAN AND O’LEARY

TABLE 9
CPU Times for Solving the Finite Difference Discretization withk = 5, for Various Grid Sizes

Qu (sine + 2D solves) Quad (sine + 1D solves)
m m
Number of Number of
processors 16 32 64 processors 16 32 64
1 1.89 25.37 — 1 1.62 13.12 —
2 .98 12.75 — 2 .85 6.91 —
4 .57 6.72 —_ 4 A7 3.74 28.24
8 43 3.56 — 8 40 2.15 14.55
16 .52 214 27.72 16 .52 1.37 8.14

used grid sizes that are powers of two only for convenience so that the grid paramete
divides the number of processors; results when this is not the case are similar. The tim
reflect the averages over three runs; these runs were made in time sharing mode and
users had access to the machine.

It is evident from these data that all the methods display a large amount of pal
lelism. The average speedups in going fr@mo 2p processors fom=32 is 1.77 for
the one-dimensional solvers and 1.90 for the two-dimensional solvers; similar efficien
are observed fom=64 andm=16 whenp is small. The higher parallel efficiencies
for the two-dimensional solvers reflect the larger ratio of arithmetic to communicati
for these preconditioners. Table 11 shows the total speedup, i.e., ratio of CPU time
one processor to CPU time gm processors, fom=32. The typically larger speedups
observed for the finite element problems also stem from the larger amount of arithm
(caused by denser coefficient matrices) for these problems. There is some degrad
of performance, especially for the one-dimensional solvers, when the number of pro
sors increases. We attribute this to the relatively large number of synchronization po
required by the modified Gram—Schmidt computation in each iteration of the GMRES
gorithm, and to the decreased amount of computation performed on each processor.
very large number of processors, performance can be improved using a Krylov subsy
method that avoids such synchronizations, e.g., GMRES with the classical Gram—Schi

TABLE 10
CPU Times for Solving the Trilinear Finite Element Discretization with k = 5, for Various
Grid Sizes
Qq (sine + 2D solves) Quq (sine + 1D solves)
m m
Number of Number of
processors 16 32 64 processors 16 32 64
1 9.20 91.56 — 1 341 24.82 —
2 4.38 45.81 — 2 1.71 12.70 —
4 2.09 24.41 — 4 .80 7.03 49.34
8 1.39 12.23 — 8 .65 3.71 25.10

16 1.20 6.67 70.59 16 .80 2.59 15.21
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TABLE 11
Speedups fonh = 32

Number of Fin. diff. Fin. diff. Fin. elem. Fin. elem.
processors Qd Qdd Qd édd
2 1.99 1.90 2.00 1.95
4 3.78 3.51 3.91 3.53
8 7.13 6.10 7.49 6.69
16 11.86 9.58 13.73 9.58

orthogonalization, or methods such as quasi-minum residual or BICGSTAB that do no
quire orthogonalization against a growing collection of old vecidtsr the more compute-
intensive two-dimensional solvers, there is little performance degradation. Despite
overall costs of the one-dimensional solvers were significantly lower, even when tt
required more iterations (i.e., for finite differences).

Remark4.3. In repeated examples of groups of three runs, we found some varia
in the average CPU times, on the order of 10%. This explains some instances (e.g.,
elements,Qq, m=16) where doubling the processors led to speedups greater than 1
These variations may derive from contention for the communication switch, although
also encountered some nontrivial variation on sixteen processors, when we occupie
whole machine.

5. CONCLUDING REMARKS

The preconditioners presented here enable efficient parallel solution of the three-dil
sional Helmholtz equation on large uniform grids. Performance of restarted GMRES \
these preconditioners is relatively insensitive to discretization mesh size and wave nur
and the algorithms are highly parallelizable.

We have some limited computational experience using QMR, a lower-storage altern:
to GMRES, on this set of test problems and preconditioners and find that the converg
rate is similar.

We have presented results of these methods on simple box-shaped domains. A pre
with Sommerfeld boundary conditions on only a portion of the boundary (arising, e
from a nozzle configuration) would be somewhat easier to handle. The methods can
be adapted for use on exterior Helmholtz problems by applying the capacitance meth
[23], perhaps using a nonuniform grid in the neighborhood of the scatterer. In forthcon
work we will present the results of applying the algorithms to problems with varying
corresponding to an inhomogeneous medium. Our results indicate that the method
practical for such problems, too.

The techniques are potentially applicable in non-Cartesian coordinate systems, alth
the “fast” solvers in such settings are not nearly as fast, relying on generation and soll
of general block tridiagonal systems [27]. We also expect them to perform well for more
curate local approximations to the radiation boundary conditions (3), of the type consid
in [4].

3 For example, in a few tests with the classical Gram-Schmidt orthogonalization and finite differences, we fi
improved speedups of 13.7 and 10.3 @y and Qqq4, respectively, on sixteen processors; cf. Table 11.
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